Lungimea unui segment

Exerciții și probleme... lungimea unui segment.

Matematică >> lungimea unui segment >> 1


\( \definecolor{red}{RGB}{255,0,0} \definecolor{blue}{RGB}{0,0,255} \definecolor{black}{RGB}{0,0,0} \definecolor{grey}{RGB}{115,115,115} \definecolor{pink}{RGB}{249,76,177} \definecolor{violet}{RGB}{173,18,212} \)
teorie
Cunoscând extremitățile segmentului \(AB\), punctele \( A(\color{red}x_A \color{grey}, \color{blue}y_A\color{grey}) \) și \( B(\color{pink}x_B \color{grey}, \color{violet}y_B\color{grey}) \),
lungimea segmentului \(AB\) este dată de formula:
\( AB = \sqrt{ (\color{red} x_A \color{grey} - \color{pink}x_B \color{grey})^2 + ( \color{blue}y_A \color{grey}- \color{violet}y_B \color{grey})^2 }\).


exemple
Să se determine lungimea segmentului \(AB\), cu \( A(\color{red}-3 \color{grey}, \color{blue}2 \color{grey}) \) și \( B(\color{pink}5 \color{grey}, \color{violet}-1 \color{grey}) \).

Rezolvare:
Folosind formula lungimii segmentului AB:
\( AB = \sqrt{ (\color{red} x_A \color{grey} - \color{pink}x_B \color{grey})^2 + ( \color{blue}y_A \color{grey}- \color{violet}y_B \color{grey})^2 }\)
se obține:
\( AB = \sqrt{ (\color{red} -3 \color{grey} - \color{pink}5 \color{grey})^2 + ( \color{blue}2 \color{grey}- (\color{violet}-1 \color{grey}))^2 }\)

deci
\( AB = \sqrt{ (-8)^2 + 3^2 }\)
\( AB = \sqrt{ 64 + 9 }\)
\( AB = \sqrt{ 73 }\).


exerciții

Lungimea segmentului \(AB\), cu \( A(\color{red} - 4 \color{grey}, \color{blue}0 \color{grey}) \) și \( B(\color{pink}4 \color{grey}, \color{violet} - 10 \color{grey}) \) este:

 \(AB=\) \({10}\)

 \(AB=\) \(2\sqrt{41}\)

 \(AB=\) \({6}\)

 \(AB=\) \(\sqrt{5}\)

 \(AB=\) \(\sqrt{155}\)


 


exercițiu nou


Folosind formula lungimii segmentului \(AB\):
\( AB = \sqrt{ (\color{red} x_A \color{grey} - \color{pink}x_B \color{grey})^2 + ( \color{blue}y_A \color{grey}- \color{violet}y_B \color{grey})^2 }\),

pentru punctele \( A(\color{red} - 4 \color{grey}, \color{blue}0 \color{grey}) \) și \( B(\color{pink}4 \color{grey}, \color{violet} - 10 \color{grey}) \),
se obține:
\( AB = \sqrt{ (\color{red} -4 \color{grey} - \color{pink}4 \color{grey})^2 + ( \color{blue}0 \color{grey}- \color{violet}(-10) \color{grey})^2 }\)

deci
\( AB = \sqrt{ ( -4 - 4 )^2 + (0 + 10)^2 }\)
\( AB = \sqrt{ (-8)^2 + 10^2 }\)
\( AB = \sqrt{ 64 + 100 }\)
\( AB = \sqrt{164}\)
\( AB = 2\sqrt{41}\).