Ecuații exponențiale

Exerciții și probleme... ecuații exponențiale.

Matematică >> Ecuații exponentiale >> 2 b.


teorie
Pentru a rezolva ecuația
    \( \displaystyle \color{red}a^{\color{dimgray}f(x)} \color{dimgray} = \color{blue}b \),
trebuie ca \( \color{blue} b \color{dimgray} > 0 \), altfel mulțimea de soluții este \( S = \emptyset \).

În cazul \( \color{blue} b \color{dimgray} > 0 \) se logaritmează în baza \( \color{red}a \), astfel:
   \( \log_{ \color{red} a} \color{red} a^{ \color{dimgray} f(x) } \color{dimgray} = \log_{ \color{red} a} \color{blue} b \)
   \( f(x) \cdot \log_{ \color{red} a} \color{red} a \color{dimgray} = \log_{ \color{red} a} \color{blue} b \)
   \( f(x) \cdot 1 = \log_{ \color{red} a} \color{blue} b \)
   \( f(x) = \log_{ \color{red} a} \color{blue} b \)

și se rezolvă această ultimă ecuație.

Dacă \( \color{blue} b \) poate fi scris sub forma \( \color{blue} b \color{dimgray} = \color{red} a^{\color{orange} c } \),
atunci ecuația inițială devine \( f(x) = \color{orange} c \).


exemple
Să se rezolve, în \( \mathbb{R} \), ecuația:
   \( 2^{3x+1} - 32 = 0 \).

Soluție:

   \( 2^{3x+1} - 32 = 0 \)
   \( 2^{3x+1} = 32 \)
   \( 2^{3x+1} = 2^5 \)
   \( 3x+1 = 5 \)
   \( 3x = 5 - 1 \)
   \( 3x = 4 \)
   \( \displaystyle x = \frac{4}{3} \)

sau

   \( 2^{3x+1} - 32 = 0 \)
   \( 2^{3x+1} = 32 \)

   \( \log_2{2^{3x+1}} = \log_2{32} \)
   \( (3x+1) \cdot \log_2{2} = \log_2{32} \)
   \( (3x+1) \cdot 1 = \log_2{32} \)
   \( 3x+1 = \log_2{32} \)

   \( 3x+1 = \log_2{2^{5}} \)
   \( 3x+1 = 5 \cdot \log_2{2} \)
   \( 3x+1 = 5 \cdot 1 \)
   \( 3x+1 = 5 \)
   \( 3x = 5 - 1 \)
   \( 3x = 4 \)
   \( \displaystyle x = \frac{4}{3} \)

deci \( \displaystyle S = \{ \frac{4}{3} \} \).


exerciții

Mulțimea de soluții a ecuației \( 3^{ 9x - 5} - 3= 0 \),
este:

    \(S=\{1\}\)

    \(\displaystyle S=\{ \frac{-9}{4}\}\)

    \(\displaystyle S=\{ \frac{3}{2}\}\)

    \(\displaystyle S=\{ \frac{-4}{9}\}\)

    \(\displaystyle S=\{ \frac{2}{3}\}\)


 


exercițiu nou

Mulțimea de soluții a ecuației \( 3^{ 9x - 5} - 3= 0 \),
este:

\(\displaystyle S=\{ \frac{2}{3}\}\).

   \( 3^{ 9x - 5} - 3 = 0 \)
   \( 3^{ 9x - 5} = 3 \)
   \( 3^{ 9x - 5} = 3^{1} \)
   \( 9x - 5 = 1 \)
   \( 9x = 1 + 5 \)
   \( 9x = 6 \)
   \( \displaystyle x = \frac{6}{9} \)

   \( \displaystyle x = \frac{2}{3} \)

sau

   \( 3^{ 9x - 5} - 3 = 0 \)
   \( 3^{ 9x - 5} = 3 \)
   \( \log_3{3^{ 9x - 5}} = \log_3{3} \)
   \( ( 9x - 5) \cdot \log_3{3} = \log_3{3} \)
   \( ( 9x - 5) \cdot 1 = \log_3{3} \)
   \( 9x - 5 = \log_3{3} \)
   \( 9x - 5 = \log_3{3}^{1} \)
   \( 9x - 5 = 1 \cdot \log_3{3} \)
   \( 9x - 5 = 1 \cdot 1 \)
   \( 9x - 5 = 1 \)
   \( 9x = 1 + 5 \)
   \( 9x = 6 \)
   \( \displaystyle x = \frac{6}{9} \)

   \( \displaystyle x = \frac{2}{3} \)

   \( \displaystyle S = \{ \frac{2}{3} \} \).